A high order ADI method for separable generalized Helmholtz equations
نویسندگان
چکیده
We present a multilevel high order ADI method for separable generalized Helmholtz equations. The discretization method we use is a onedimensional fourth order compact finite difference applied to each directional component of the Laplace operator, resulting in a discrete system efficiently solvable by ADI methods. We apply this high order difference scheme to all levels of grids, and then starting from the coarsest grid, solve the discretized equation with an ADI method at each grid level, with the solution from the previous grid level as the initial guess. The multilevel procedure stops as the ADI finishes its iterations on the finest grid. Analytical and experimental results show that the proposed method is highly accurate and efficient while remaining as algorithmically and data-structurally simple as the single grid ADI method. q 2000 Elsevier Science Ltd. All rights reserved.
منابع مشابه
A High Order ADI Method For Separable Genneralized Helmholty Equations
We present a multilevel high order ADI method for separable generalized Helmholtz equations. The discretization method we use is a 1-D fourth order compact nite di erence applied to each directional component of the Laplace operator, resulting a discrete system e ciently solvable by ADI methods. We apply this high order di erence scheme to all levels of grids, and then starting from the coarses...
متن کاملTensor Product Generalized ADI Methods for Elliptic Problems
We collsider IlOlving separable, second order. linear elliptic partial differential equations. If an elliptic problem is separable, then, for certain discretizations. the matrices involved in the corresponding discrete problem can be expressed in terms of tensor products of lower order matrices. In the most general case. the discrete problem can be written in the form (Al@Bz +81i&lA,2)C ==F. We...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملPreconditioned Conjugate-Residual Solvers for Helmholtz Equations in Nonhydrostatic Models
Numerical integration of the compressible nonhydrostatic equations using semi-implicit techniques is complicated by the need to solve a Helmholtz equation at each time step. The authors present an accurate and efficient technique for solving the Helmholtz equation using a conjugate-residual (CR) algorithm that is accelerated by ADI preconditioners. These preconditioned CR solvers possess four d...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کامل